Optimasi Volume Injeksi Pada Waterflooding Menggunakan Metode Artificial Neural Network
نویسندگان
چکیده
Waterflooding adalah salah satu metode pemulihan sekunder yang bertujuan untuk mempertahakan tekanan reservoir. Volume air injeksi disesuaikan agar tidak terjadi penurunan oil recovery. Tujuan dari penelitian ini mengoptimalkan nilai Injection dan Recovery Factor (RF) dengan menggunakan Artificial Neural Network (ANN). Parameter digunakan porositas, permeabilitas horizontal, vertikal, saturasi minyak, air, kompresibilitas batuan. Software simulasi reservoir Computer Modeling Group (CMG), kemudian optimasi Machine Learning (ML). Pendekatan rasio 0,7:0,3 data pelatihan pengujian. dilakukan trial and error pada 10 node hidden layer. Hasil memiliki akurasi tinggi karena R2 training testing mendekati 1, sehingga recovery factor sebesar 26.17%, meningkat 5.85% basecase volume 15387684 bbl atau 15.4 MMbbl.
منابع مشابه
Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...
متن کاملMultidimensi Pada Data Warehouse Dengan Menggunakan Rumus Kombinasi
Multidimensional in data warehouse is a compulsion and become the most important for information delivery, without multidimensional data warehouse is incomplete. Multidimensional give the able to analyze business measurement in many different ways. Multidimensional is also synonymous with online analytical processing (OLAP).
متن کاملValidasi data dengan menggunakan objek lookup pada borland delphi 7.0
s: Developing an application with some tables must concern the validation of input (scpecially in Table Child). In order to maximize the accuracy and input data validation. Its called lookup (took data from other dataset). There are 2 (two) ways to lookup data from Table Parent: 1) Using Objects (DBLookupComboBox & DBLookupListBox), or 2) Arranging The Properties Of Fields Data Type (shown by u...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Distillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal serambi engineering
سال: 2023
ISSN: ['2528-3561', '2541-1934']
DOI: https://doi.org/10.32672/jse.v8i2.5987